CLASSIFICATION

RESEARCH MEMORANDUM

STATIC LONGITUDINAL AND LATERAL STABILITY AND CONTROL

CHARACTERISTICS OF AN AIRPLANE CONFIGURATION

SAVING A WING OF TRAPEZOIDAL PLAN FORM

WITH VARIOUS TAIL AIRFOIL SECTIONS

AND TAIL ARRANGEMENTS AT A MACH

NUMBER OF 6.86

By Jim A. Penland, David E. Fetterman, Jr., and Herbert W. Ridyard

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 764, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

August 15, 1955

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

STATIC LONGITUDINAL AND LATERAL STABILITY AND CONTROL

CHARACTERISTICS OF AN AIRPLANE CONFIGURATION

HAVING A WING OF TRAPEZOIDAL PLAN FORM

WITH VARIOUS TAIL AIRFOIL SECTIONS

AND TAIL ARRANGEMENTS AT A MACH

NUMBER OF 6.86

By Jim A. Penland, David E. Fetterman, Jr., and Herbert W. Ridyard

SUMMARY

An investigation has been carried out in the Langley 11-inch hypersonic tunnel to determine the static longitudinal and lateral stability and control characteristics of an airplane configuration having a trapezoidal wing with a modified hexagonal airfoil section and equipped with various tail airfoil sections and tail arrangements. Tail airfoil sections tested were a 10° wedge, a flat-plate section, and a series of composite airfoils consisting of flat plates forward of the hinge lines and wedges behind the hinge lines. The tests were made at a Mach number of 6.86 and a Reynolds number of 343,000 based on the wing mean aerodynamic chord. Data were obtained for angles of sideslip up to 10° and angles of attack up to 25° for the complete model with the cruciform 10° wedge horizontal and vertical tails and for the complete model with various tail arrangements.

INTRODUCTION

Previous experimental investigations at the Langley Laboratory of the supersonic airplane configuration shown in figure 1 have been made by using wedge airfoil sections for the horizontal and vertical tails. These investigations have supplied the longitudinal and lateral stability and control characteristics for a complete model and various combinations of its components at Mach numbers of 4.06 and 6.86 (refs. 1 to 6).

UNCLASSIFIED

The purpose of the present investigation was to determine the effect of tail airfoil sections on the stability and control characteristics of the aircraft configuration tested in references 1 to 6. A series of tail airfoil sections were tested which simulated an airfoil whose section could be changed from a flat plate to a section consisting of a flat plate forward of the hinge line and a wedge behind the hinge line. Such airfoils would provide a tail configuration in which the airfoil sections could be changed during a flight of changing Mach number to provide the variable effectiveness necessary. Tail arrangements, other than the original cruciform horizontal—and vertical—tail configuration and those reported in references 5 and 6 were tested to provide additional comparisons of some of the many possible arrangements.

The design of the basic configuration (fig. 1) incorporated relatively large leading-edge radii on both the wing and tail surfaces in order to provide adequate heat capacity at the leading edge to keep the heat-transfer rates, at hypersonic speeds, within feasible limits. From recent information on the beneficial effects of leading-edge sweep and the use of materials capable of withstanding higher temperatures, it appears that smaller radii could have been used with resulting improvement in the aerodynamic characteristics. However, in order to provide a consistent basis of comparison, the large leading-edge radii were also used for the present tests.

Six-component data have been obtained for the complete model with the various tail arrangements and tail airfoil sections. The present paper contains the static longitudinal and lateral stability and control results for various horizontal-tail deflections.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as coefficients of forces and moments. The longitudinal data are referred to the stability-axis system and the lateral data are referred to the body-axis system. The body- and stability-axis systems are illustrated in figure 2 and the axis-transfer equations are given in the appendix. As indicated in the appendix, lateral-force and pitching-moment coefficients are unchanged in this transfer of axes. The moment reference is at 54 percent of the wing mean aerodynamic chord (52.66 percent of the body length measured from the nose). The coefficients and symbols are defined as follows:

 $C_{
m L}$ lift coefficient, $-Z_{
m S}/qS$

 C_D drag coefficient, $-X_S/qS$ (at $\beta = 0^{\circ}$.)

 $C_{\mathbf{D_O}}$ minimum drag coefficient

r/d	lift-drag ratio, $^{\mathrm{C}}_{\mathrm{L}}/^{\mathrm{C}}_{\mathrm{D}}$
c_N	normal-force coefficient, -ZB/qS
$\mathtt{c}_{\mathtt{Y}}$	lateral-force coefficient, Y/qS
cı	rolling-moment coefficient, $I_{\mathrm{B}}/\mathrm{qSb}$
c_{m}	pitching-moment coefficient, M'/qSc
c_n	yawing-moment coefficient, $N_{ m B}/{ m qSb}$
x	force along X-axis
Y -	force along Y-axis
Z	force along Z-axis
L	moment about X-axis
Wı	moment about Y-axis
N	moment about Z-axis
q	free-stream dynamic pressure
s	total wing area including area submerged in fuselage
ъ	wing span
c	wing chord
ē	wing mean aerodynamic chord
M	Mach number
R	Reynolds number
α	angle of attack, deg
β	angle of sideslip, deg
$\mathtt{i}_\mathtt{H}$	incidence angle of horizontal tail, deg

C _{max}	rate of change of pitching-moment coefficient with angle of
w	attack, $\left(\frac{\partial C_m}{\partial \alpha}\right)$, per deg
	$\cos \alpha_{\infty}$

rate of change of lateral-force coefficient with angle of sideslip at zero sideslip angle,
$$\left(\frac{\partial C_Y}{\partial \beta}\right)_{\beta=0}$$
, per deg

rate of change of rolling-moment coefficient with angle of sideslip at zero sideslip angle,
$$\left(\frac{\partial C_{l}}{\partial \beta}\right)_{\beta=0}$$
, per deg

rate of change of yawing-moment coefficient with angle of sideslip at zero sideslip angle,
$$\left(\frac{\partial C_n}{\partial \beta}\right)_{\beta=0}$$
, per deg

Subscripts:

- B body-axis system
- S stability-axis system

MODELS AND APPARATUS

Models

The basic model used for the present tests is shown in figure 1. Details of this model are given in the three-view drawing (fig. 3) and in the table of geometric characteristics (table I). The model was equipped with removable tail surfaces which enabled the testing of tail surfaces with the following airfoil sections: 10° wedge (the results of which were previously presented in refs. 1, 2, and 5), flat plate, and composite sections made up of flat plates extending from the leading edge to the hinge line, with 10°, 20°, and 30° total-angle wedges extending from the hinge line to the trailing edge (ref. 7). All tail airfoil sections had approximately identical leading-edge radii (fig. 4).

The previous tests of references 2 and 5 have shown the bottom vertical tail to be most effective in producing lateral stability at high angles of attack; however, from take-off and landing considerations, a tail surface in this location is undesirable. Therefore, in order to retain some of the directional stability of the lower vertical tail and to eliminate, to a large extent, its take-off and landing disadvantages,

a stub of the lower vertical-tail configuration was tested (figs. 4 and 5). The addition of a lower stub tail, having an exposed area of one-quarter of the exposed, bottom vertical-tail area, to the conventional top vertical and horizontal tails was believed sufficient to give positive values of the lateral-stability parameter $C_{n_{\beta}}$, throughout the angle-of-attack range tested. Sketches of the stub tail and the various tail airfoil sections tested are shown in figure 4.

In addition, the model with 10° wedge tail airfoil sections was tested with the tail surfaces rotated 45° from the original vertical and horizontal positions. Designations for the various tail configurations tested are shown in figure 5.

The complete model (equipped with the 10° wedge tail airfoil sections) mounted for testing in the tunnel is shown in figure 6. A discussion of some of the design features of the model is included in reference 1.

Balance and Model Support

Six-component force and moment measurements were made by means of two strain-gage balances. Five components, including normal force, lateral force, pitching moment, rolling moment, and yawing moment, were measured on a balance mounted inside the model. The sixth component, chord force, was obtained on a two-component external balance measuring normal force and chord force. In addition, a one-component external balance was used to measure pitching moment in some of the pitch tests.

The five-component balance was initially designed to measure only four components; therefore, in order to adapt the balance for use in the present program, strain gages were added to the balance sting and calibrated to measure rolling moment. This method of obtaining a rolling-moment component resulted in less sensitivity than desired.

The model was attached to the balance so that constant geometry between model and balance was maintained for all test angles. The model was placed at an angle of sideslip by means of a bent sting; angles of attack were obtained by rotating the model and balance about a horizontal axis normal to the wind stream. This type of model rotation necessitated a correction to the static angles of attack and sideslip and these corrections combined with the model deflections due to aerodynamic loads were incorporated in computing the corrected test angles. Model deflections were obtained through the use of angles measured from schlieren photographs and the balance-deflection calibration.

Wind Tunnel

The tests were conducted in the Langley 11-inch hypersonic tunnel. For this investigation, the tunnel was equipped with a single-step two-dimensional nozzle constructed of Invar. The nozzle was designed by the method of characteristics with a correction made for boundary layer and operates at an average Mach number of 6.86. The duration of each run was about 80 seconds, and the variation of test-section Mach number with time is negligible after the first 15 seconds of running time. This constant Mach number flow made it possible to obtain forces for several angles of attack during each run. The model was held at low angles of attack for starting and stopping the runs in order to minimize shock loads on the strain-gage balance which supports the model.

Tests

Tests were made at an average stagnation temperature of 675° F to avoid air liquefaction (ref. 8), a stagnation pressure of 20 atmospheres absolute, and a test Mach number of 6.86. These conditions correspond to a Reynolds number of 343,000 based on wing mean aerodynamic chord. The absolute humidity was kept to less than 1.87×10^{-5} pounds of water per pound of dry air for all tests. Tests were made at angles of side-slip from -5° to 10° through an angle-of-attack range of -5° to 25° . The model was tested with horizontal-tail incidences of 0° , about -10° , and -20° .

PRECISION OF DATA

The probable uncertainties in the force and moment coefficients for individual tests points — due to the balance system and variations in the dynamic pressure — have been evaluated and are presented as follows:

$\mathtt{C}_{\mathbf{L}}$			•			•	•	•	•		•	•			•	•	•		•	•	٠	•	•		•		•	•		. ±0.03
$c_{D_{\Omega}}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	±0.006
c_{N}			•			•	•	•	•	•	•	•	•		•								•	•	•	•			•	. ±0.02
																														±0.005
																														±0.005
																														±0.0015
С,	•			•	•	•	•																	•	•			•	•	±0.003

In general, the faired curves should be more accurate than these values.

The angle of attack α and angle of sideslip β were accurate within $\pm 0.10^{\circ}$.

RESULTS

The experimental aerodynamic characteristics of the model with various tail airfoil sections and tail-surface locations are given in tables II to IV. Plots representing portions of the data included in these tables are presented in figures 7 to 19.

The variations of C_L , C_D , and L/D with angle of attack for the model at $\beta=0^{\circ}$ with the different tail airfoil sections at $i_H=0^{\circ}$ are shown in figure 7. Figure 8 presents similar data for the model with the x-tail configuration having a 10° wedge tail section. In figure 9, the variations of C_m with α for the complete model at $\beta=0^{\circ}$ with the various tail airfoil sections at $i_H=0^{\circ}$, $i_H\approx-10^{\circ}$, and $i_H=-20^{\circ}$ are presented. In order to show the effect of the wing on the pitching-moment characteristics of the model, data for the body-tail configuration are also included in figure 9.

The effects of tail airfoil section on the variations of the longitudinal characteristics C_L , C_D , L/D, and C_m with angle of attack for the model at $\beta=0^\circ$ are presented in figures 10 to 13. Some of these data are taken from figures 7 and 9 and are repeated here for comparison purposes. The erratic characteristics in the pitching-moment variations of the model in the angle-of-attack range 0° to 10° with $1_H \approx -10^\circ$ (see fig. 9 or fig. 13(c)) are due partly to the effect of the wing wake on the horizontal tail which, as can be seen in the three-view drawing (fig. 3), is directly in line with the wing.

The effects of tail airfoil section on the variations of the lateral characteristics C_Y , C_l , and C_n with sideslip angle of the model at $\alpha = 0^\circ$ are shown in figure 14.

Figure 15 presents the variations of the minimum drag coefficient and the static stability derivatives $c_{m_{\alpha}}$, $c_{Y_{\beta}}$, $c_{l_{\beta}}$, and $c_{n_{\beta}}$ with angle of tail flare for the complete model. Values of these parameters obtained with the 10° wedge tail airfoil section are also included for comparison purposes.

The results of changing the tail-surface geometry (stub-tail configuration) and location (x-tail configuration) both having 10° wedge airfoil sections are given in figures 16 to 19. The variations of C_Y , C_I , and C_n with sideslip angle for the stub-tail configuration at various angles of attack are shown in figure 16. The pitching-moment characteristics at $\beta=0^{\circ}$ of the complete model, x-tail configuration, and stub-tail configuration are presented in figure 17, and the lateral

stability characteristics at $\alpha = 0^{\circ}$ for these configurations are presented in figure 18.

The variations of the lateral-stability derivatives $C_{Y_{\beta}}$, $C_{l_{\beta}}$, and $C_{n_{\beta}}$ with angle of attack for the stub-tail and other tail configurations previously reported are given in figure 19. Data for all tail configurations shown, except the stub tail, were obtained from references 2 and 5. From the variations of $C_{n_{\beta}}$ with angle of attack, it is apparent that at the higher angles of attack, the stub tail, having only 25 percent of the original exposed lower tail area, gave about 33 percent of the effectiveness obtained previously from the original lower, vertical fin. The effectiveness of the stub tail does not vary directly with its area because it is operating in a region of high dynamic pressure . brought about by the compression wave emanating from the nose of the fuselage, particularly at high angles of attack.

Typical schlieren photographs of the complete model equipped with the tail airfoil sections tested are shown in figure 20; and figure 21 contains schlieren photographs of the model with various tail arrangements using a 10° wedge tail airfoil section.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 9, 1955.

APPENDIX

AXIS-TRANSFER EQUATIONS

The equations for transfer of force and moment coefficients from the body-axis system to the stability-axis system are as follows:

$$C_{Y_S} = C_{Y_B}$$

$$C_{l_S} = C_{l_B} \cos \alpha + C_{n_B} \sin \alpha$$

$$C_{n_S} = C_{n_B} \cos \alpha - C_{l_B} \sin \alpha$$

$$C_{m_S} = C_{m_B}$$

$$C_{L_S} = C_{N_B} \cos \alpha - C_{D_B} \sin \alpha$$

$$\mathtt{C}_{D_{\mathbf{S}}} = \mathtt{C}_{D_{\mathbf{B}}} \text{ cos } \alpha + \mathtt{C}_{N_{\mathbf{B}}} \text{ sin } \alpha$$

ŗ

- 1. Penland, Jim A., Ridyard, Herbert W., and Fetterman, David E., Jr.: Lift, Drag, and Static Longitudinal Stability Data From an Exploratory Investigation at a Mach Number of 6.86 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM 154103b. 1955.
- 2. Ridyard, Herbert W., Fetterman, David E., Jr., and Penland, Jim A.: Static Lateral Stability Data From an Exploratory Investigation at a Mach Number of 6.86 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L55A2la, 1955.
- 3. Dunning, Robert W., and Ulmann, Edward F.: Static Longitudinal and Lateral Stability Data From an Exploratory Investigation at Mach Number 4.06 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L55A21, 1955.
- 4. Dunning, Robert W., and Ulmann, Edward F.: Exploratory Investigation at Mach Number 4.06 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form Longitudinal and Lateral Control Characteristics. NACA RM 155B28, 1955.
- 5. Fetterman, David E., Jr., Penland, Jim A., and Ridyard, Herbert W.:
 Static Longitudinal and Lateral Stability and Control Data From an
 Exploratory Investigation at a Mach Number of 6.86 of an Airplane
 Configuration Having a Wing of Trapezoidal Plan Form. NACA
 RM 155CO4. 1955.
- 6. Dunning, Robert W., and Ulmann, Edward F.: Exploratory Investigation at Mach Number 4.06 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form Effects of Various Tail Arrangements on Wing-On and Wing-Off Static Longitudinal and Lateral Stability Characteristics. NACA RM 155D08, 1955.
- 7. McLellan, Charles H.: A Method of Increasing the Effectiveness of Stabilizing Surfaces at High Supersonic Mach Numbers. NACA RM L54F21, 1954.
- 8. McLellan, Charles H., and Williams, Thomas W.: Liquefaction of Air in the Langley 11-Inch Hypersonic Tunnel. NACA TN 3302, 1954.

TABLE I .- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:			
Area (including area submerged in fuselage), sq in			6.24
Span, in			4.33
Mean aerodynamic chord, in.			1.716
Root chord at plane of symmetry, in			
Tip chord, in.			
Airfoil section Hexagonal with round			
Taper ratio			
Aspect ratio			
Sweep of leading edge, deg			
Sweep of quarter-chord line, deg			
Incidence at fuselage center line, deg			
Dihedral, deg			
Geometric twist, deg			
Geometric twist, deg	• •	• •	0
Horizontal or vertical tails:			
Area (including area submerged in fuselage), sq in			0.06
Span, in			
Mean aerodynamic chord, in			
Root chord at plane of symmetry, in			
Tip chord, in.			
Airfoil section			
Taper ratio			
Aspect ratio			
Sweep of leading edge, deg	• •	• •	22.63
Fuselage:			B 50
Length, in.			
Maximum diameter, in			
Fineness ratio			
Base diameter, in	• •	• •	0.790
Distance from nose to moment reference			
Ogive nose length, in			
Ogive radius, in			6.85

Table II.- Aercdynamic characteristics of the models at M=6.86; R=543,000; PIVE-component body-axis data

(a) Complete model

deg.	α, deg.	β, deg.	Cvr	C _{IL}	C _E	c _n	CY	ip, deg.	deż.	β, deg.	3 ^N	G _m	C	C _n	C.t
		•	•			10	nedge to	110							<u> </u>
000000000000000000000000000000000000000	- 0.02 96 1.60 2.83 3.88 5.93 7.87 9.85 14.78 0.00 1.07 2.05 3.02 4.08 6.07 7.90 9.98 15.00	000000000000000000000000000000000000000	0.0027 .0065 .0105 .0593 .0751 .1163 .12155 .3679 .5735 .7657 0069 .0198 .0254 .0506 .0910 .1352 .1783 .3224 .7355	-0.0002 0047 0046 0114 0134 0206 0312 0754 1311 2021 .0165 .0170 .0181 .0222 .0231 .0129 .0080 0056 0323 0323 0323	3,0008 ,0007 ,0005 ,0012 ,0013 ,0018 ,0026 ,0033 ,0066 ,0037 ,0060 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010 ,0010	0.3302 .0007 .0002 .0003 .0002 .0003 .0002 0003 0001 0002 0002 3001 .0000 .0001 0002 3000 .0001 0002	0.000 - 0000 - 00018 - 0015 - 0022 - 0024 - 0036 - 0036 - 0036 - 0066 - 0006 - 0002 - 0002 - 0002 - 0002 - 0021 - 0022 - 0021 - 0029 -	-20 -20 -20 -20 -20 -20 -20 -20 -20 -20	0.05 1.06 2.27 3.10 4.27 6.07 7.95 10.00 20.18 25.17 - 13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.0075 .0025 .0125 .0125 .0201 .0753 .1200 .14697 .6911 0013 .0024 0038 0038 0041 0001	3,0180 .02 % .0311. .0536 .0705 .0705 .04,62 .04,63 .04,63 .025 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010	0.0007 2003 0009 0003 0010 0010 0010 0011 0010	0.0001 .0000 .0000 .0000 .0000 .0001 .0003 .0003 .0002 .0003 .0002 .0003 .0003 .0005 .0013 .0005 .0013 .0005 .0013 .0005 .0013	-0.00½00200000000700160017001800260037005900590261039505930593
		,					Flat-pla	te tail	3						
000000000000000000000000000000000000000	- 5.17 - 2.17 09 1.92 3.75 5.72 7.75 9.67 14.58 24.67 - 4.67 2.00 3.83 5.92 7.83	111111111100000 1111111111100000	-0.0°69 - 0342 - 0003 -0709 -1066 -719 -1997 -3434 -7592 - 1005 -0039 -0251 -0948 -1342	0.0043 .0031 .0036 .0042 .0042 .0056 .0123 .0123 .0164 .1306 .0122 .0160 .0160 .0139 .0131	0.005 .0028 .0029 .0029 .0029 .0037 .0037 .0031 .0031 .0036 .0036 .0036 .0036	0.0005 .0006 .0005 .0005 .0005 .0005 .0006 .0009 .0008 .0008 .0008 .0001 .0001 .0001 .0001 .0001 .0001 .0001	-0.0013 -0.002 -0.002 -0.003 -0.005 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003 -0.00	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	9.92 14.75 19.58 20.58 0 0 0 0 0	0 0 0 0 -5.00 -3.92 -2.83 -1.758 57 1.33 2.266 3.18 5.93 8.01	0.1763 .3064 .41797 .6924 .0003 .0037 .0037 .0037 .0072 .0073 .0073 .0076 .0070	0.011,0 .0073 013,1 0001 0001 0000 0006 0005 0005 0005 0005 0005 0005 0005	-0.0021 0011 0039 005 0039 0039 0009 0009 0015 0011 0001	-0.000l - 0002 -0001 - 00015 - 00016 - 00010 - 0003 - 0003 - 0003 - 0003 - 0002 - 0002 - 0002 - 0002	0.003k .0051 .0063 .008k .0357 .0165 .0165 .008c .0028 0040 00101 0183 0261 0462 0583
							20° Flar	ed tail							
000000000000000000000000000000000000000	- 5.00 - 2.00 - 1.83 - 1.83 - 5.67 - 7.67 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.08_h 0327 .0027 .0027 .00375 .0726 .1093 .1531 .2007 .5291 .5291 .5291 .5291 .0084 .0085 .0087 .0084 .0087 .0084	0,0108 ,0360 ,0360 -0013 -0013 -0014 -0025 -027 -056 -1053 -1682 -0002 -0005 ,0005 ,0005 ,0003	0.0068 .0010 .0003 .0003 .0003 .0003 .0003 .0006 .0002 .0012 .0012 .0012 .0005 .0001 .0001 .0001	0,0003 .0003 .0003 .0003 .0002 .0002 .0007 .0007 .0007 .0003 .0000 .0000 .0000 .0007 .0003	-0,000ls .0005 .0005 .0003 .0019 .0017 .0019 .0019 .0021 .0210 .0052 .0012 .0012 .0012 .0012 .0012 .0012	0 0 10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4 -10,4	0 0 0 9.92 14.75 19.82 24.87 24.87 24.87 3.88 3.75 3.75 9.45 19.75 24.75	5.58 7.75 9.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0064 ,0067 ,0072 ,1818 ,3110 ,1920 ,7063 - ,1095 - ,0450 - ,0250 ,0200	0,0002 ,0006 ,0018 ,0122 ,0018 ,0196 ,0572 ,0572 ,0586 ,0154 ,0117 ,0117 ,0117 ,0117 ,026	-0,0003 - ,0019 - ,0020 - ,0020 - ,0027 - ,0027 - ,0027 - ,0021 - ,0021 - ,0020 - ,0020 - ,0020 - ,0025 - ,0025 - ,0020 - ,0025	0,001,1 ,0058 ,0061 ,0005 ,0006 ,0009 ,0012 ,0010 ,0006 ,0006 ,0006 ,0005 ,0005 ,0006 ,0005 ,0006 ,0005	-0.0687 0697 0601 .0001 .0009 .0009 0008 0008 .0006 .0006 .0006 .0002 .0009 .0006 .0001 .0006 .0003 .0009
<u></u>								a tail	<u> </u>						
00000000000000	4.800.2000.0000.000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.0869 - 0320 .0051 .0506 .0794 .1161 .1630 .2121 .3622 .5529 .7690 .0062 .0101 .0076 .0091	0.0184 .0092 .6000 0105 0142 0341 0423 0124 0124 0124 013 0017 0017 0013 0017 0010	C.0002 .0003 .0003 .0019 .0019 .0014 .0011 .0029 .0029 .0059 .0059 .0077 .0012 .0016 .0016	-0.600k000100010001000100090009000100090009000900090009	-0.031b - 0.035 - 0.001 - 0.002 - 0.002 - 0.003 - 0.005 - 0.003 - 0.024 - 0.025 - 0.020 - 0.02	0 0 0 0 10.2 -10.2 -10.2 -10.2 -10.2 -10.2 -10.2 -10.2 -10.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.58 5.55 5.55 5.55 6.55 6.55 6.55 6.55 6	0.0052 .0052 .0050 .0079 .0071 1125 06.58 00.0 .0247 .0537 .0569 .1403 .1629 .3206 .1980 .7211	-0.0012 0013 0010 0022 0029 00325 0143 0180 0250 0333 0070 0053 0091 00849	-0.0021 0021 0011 0015 .0006 .0011 .0012 .0013 003 003 003 003 003 0021 0038 0026	0.00\12 .0056 .008i .011i .011i .000 .000 .0002 .0002 .0002 .0002 .0003 .0006 .0009 .0015	-0.0253 0350 0536 0775 0977 0018 0006 .0002 .0006 .0012 .0006 .0012 .0008 .0014 .0035 .0012

Table II.- Aerodynamic Characteristics of the Models at M=6.86; R=343,000; FIVE-COMPONENT BODY-AXIS DATA — Continued

(a) Complete model - Concluded

im,	c, deg.	β, deg.	C ^N	C _{ns.}	O,	c _n	C _T	i,	€; deg.	β, deg.	C _M	C _m	c,	C _n	C ^X
							30° Fla:	<u> </u>			L	L		L	<u> </u>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.83 -1.83 -25 2.00 3.92 5.83 7.83 9.75 14.50 19.33 24.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.0924 0950 .0026 .0431 .0638 .1251 .1715 .2717 .3753 .5757 .8190	0.0279 .071/14 .00000137021/2036705060629114718702761	0.0002 7006 0007 0001; 0010 0033 0017 00117		0.0011 .0010 .0016 .0019 .0028 .0029 .0038 .0037 .0040 .0061 .0075	000000000	O O O O O O O O O O	- 4.83 - 2.17 - 1.00 .83 1.83 2.50 3.58 5.50 7.42 9.83	0.0057 .0058 .0089 .0089 .0091 .0091 .0093 .0094 .0096	-0.0001 0029 0021 0013 0010 0016 0013 0002 0000	-0.0001 0007 0011 0015 0018 0023 0023 0036 0064	-0.0120 0013 0023 0003 .0014 .0032 .0063 .0067 .0129 .0175 .0228	0.052h .02h7 .01dr .0009 0070 0168 0291 039h 0616 08h1 1136
0 1	5.08 2.17 1.92 3.83 5.75 7.83 9.67 14.75 19.50 21.33	0000000000	-0.0014 0277 .0036 .0351 .0709 .1080 .1192 .1975 .3462 .5238	.0058 .0004 0003 0013 0100 0164 0269 0657 1069 1568	.0009 .0011 .0011 .0012 .0013 .0006 .0003 0006 0030	-0,0001 - 0002 - 0000 - 0000 - 0000 - 0001 - 0001 - 0002 - 0002	-0.0012 0006 0003 .0003 0003 0001 0009 0007 .0004 .0120	000000000	00000000	- 5.00 - 3.08 - 1.08 08 83 1.83 2.83 3.75 5.67 7.67	0.0073 .0074 .0073 .0074 .0076 .0077 .0078 .0074	-0.0020 0019 0018 0018 0017 0017 0016 0014	-0,0009 - 0005 - 0010 - 0003 - 0006 - 0001 - 0008 - 0015 - 00115	0.0039 .0017 .00014 0022 0031 0059 00914	-0.0106 0230 0077 0005 .0066 .0110 .0216 .0302 .0533 .0703
						Stu	b-tail co	nfigura	ation						
000000000000000000000000000000000000000	000 173305888395151083173367675350443850	- 1.99 - 2.00 - 2.00 - 1.99 - 1.98 - 1.98 - 1.98 - 1.00 -	-0.095902600362 -0.0362 -0.0363 -1130 -1571 -2.082 -35516 -7913095709570958 -0722 -1188 -20566 -3566 -3566 -3118 -1088 -1118 -118 -1	0.0208 .0160 .0160 .0112 .01130 .0130 .0131 .0157 .0210 .0157 .0210 .0257 .0266 .027 .0288 .0317 .0288 .0317 .0288 .0317 .0288 .0317 .0298 .0317 .0317 .0317 .0318 .0317 .0318 .0317 .0318 .0317 .0318	0.00070006 .0001 .0008 .0007 .0023 .0033 .0052 .0081000700100010 .0011 .0014 .0023 .005600190036 .005600190036003600360036003600370036003700360037003600370036003700360037003600370036003700360037003600370036003700360037003600370036	-0.0040001	0.008 .0092 .0093		- 1.72 - 1.73 -	1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99	-0.094300290037002900370029003700261571206135710030003	0.02046 - 00073 - 00173 - 01279 - 01279 - 01279 - 12289 - 12284 - 00216 - 00217 - 0021	- 0.0012002500160017001000310032003200170010001000110010001100100011001000110010001100100011001000110010001100100011001000110010001100100011001000110010001100100011001000110010	0.0013 .0012 .0006 .0012 .0010 .0006 .0005 .0015 .0013 .0011 .0013 .0010 .0006 .005 .0017 .0013 .0011 .0017 .0013 .0011 .0006 .005 .0017 .0011 .0006 .005 .0017 .0018 .0026 .0026 .0026 .0026 .0031 .0016 .0026 .0026 .0031 .0016 .0026 .0031 .0016 .0026 .0031 .0016 .0026 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031 .0031	

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE MODELS AT M=6.86; R=343,000; FIVE-COMPONENT BODY-AXIS DATA — Concluded

(b) Body-tail configuration; $\beta = 0^{\circ}$

				,		om 18m ac					
i _H , deg.	deg.	C _N	C ^m	i _H , deg.	deg.	c ^N	C _m	in, deg.	α, deg.	C ^N	C _m
					100	wedge ta	ils				
00000000000	0.12 1.08 2.02 3.03 3.98 4.98 5.92 7.88 9.83 11.87 13.82 15.70 17.68	0.0002 .0088 .0163 .0240 .0345 .0438 .0545 .0767 .1020 .1290 .1609 .2030	-0.0008 -0037 -0069 -0099 -0133 -0170 -0205 -0285 -0388 -0512 -0678 -0897 -1151	0 0 0 0 -10 -10 -10 -10 -10 -10	19.55 21.50 23.40 25.35 27.30 -4.75 -1.75 -08 2.17 4.08 6.08 8.08 10.00	0.2893 .3347 .3778 .4287 .4820 .0754 .0435 .0249 .0076 .0192 .0470 .0683	-0.1\111 1671 1923 221\1 2505 073\1 .0561 .0450 .0372 .026 .0243 .0198 .0157	-10 -10 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20	15.00 19.83 24.58 1.12 2.142 1.33 6.25 8.83 10.08 15.17 20.00 25.00	0.1253 .2068 .3008 .0598 .0114 .0217 .0009 .0191 .0379 .0901 .1587 .2111	0.0002 0294 0681, 1012 .0920 .0822 .0732 .0668 .0655 .0620
	<u> </u>	L_,	<u></u>		Flat	plate ta	ils	<u>. </u>	L	<u> </u>	L
-10 -10 -10 -10	-4.67 -1.83 .25 2.08	-0.0580 0310 0161 0001	0.0424 .0322 .0274 .0214	-10 -10 -10 -10	4.00 6.08 8.00 10.00	0.0152 .0316 .0481 .0683	0.0227 .0210 .0202 .0184	-10 -10 -10	14.75 19.75 24.75	0.1254 .1992 .2870	0.0112 0079 0362
					100	Flared ta	ils				
-10°† -10°† -10°†	-4.58 -1.75 .17 2.08	-0.0703 0407 0221 0048	0.0635 .0484 .0395 .0325	-10°7 -10°7 -10°7	4.00 6.08 8.00 9.92	0.0127 .0292 .0481 .0682	0.0277 .02h1 .0215 .0188	-10.4 -10.4 -10.4	14.75 19.75 24.67	0.1262 .2036 .2977	0.0070 0179 0525
					20°	Flared ta	ils				
-10.2 -10.2 -10.2 -10.2	-4.58 -1.75 .33 2.17	-0.0798 0465 0279 0092	0.0804 .0612 .0488 .0395	-10.2 -10.2 -10.2 -10.2	4.08 6.08 8.00 9.92	0.0098 .0289 .0483 .0710	0.0311 .0244 .0199 .0139	-10.2 -10.2 -10.2	14.75 19.67 20.58	0.1323 .2142 .3142	-0.0048 0383 0843
					300	Flared ta	ils				
-9.6 -9.6 -9.6	-4.59 -2.00 17 2.08	-0.0872 0532 0322 0112	0.0957 .0724 .0569 .0451	-9.6 -9.6 -9.6	3.75 5.83 7.75 9.91	0.0090 .0303 .0520 .0748	0.0323 .0219 .0133 .0046	-9.6 -9.6 -9.6	14.50 19.41 24.16	0.1437 .2327 .3408	0.0257 .0726 .1326

Table III.- Aerodynamic characteristics of the models at M=6.86; R=343,000; TWO-COMPONENT STABILITY-AXIS DATA

(a) Complete model; $\beta = 0^{\circ}$

i _H ,	ceg.	СĽ	c _D	L/D	iH;	đeg.	c_{L}	c ^D	L/D	i _H ,	æ,	C ^T	C _D	I/D
Γ.						10	00 wedge	tai la						
0000000	-0.03 1.80 3.77 5.93 8.13 10.35 15.67 20.78	0.0078 .C431 .0782 .1178 .1618 .2091 .3564 .5465	0.0374 .0418 .0487 .0574 .0699 .0882 .1581 .2743	0.21 1.03 1.61 2.05 2.31 2.37 2.25 1.99	0 무무무무무 무무무무	26.33 -5.25 -1.25 -2.25 17 08 1.92	0.7362 1227 1024 0542 0112 0102 .0177	0.4571 .0729 .0644 .0459 .0459 .0452 .0456	1.61 -1.68 -1.59 -1.09 -1.24 -24 -39	유유 유유 유유 유유 유유 유유 유유	3.83 4.83 6.00 8.17 10.08 15.67 26.00	0.0111 .0569 .0614 .1259 .1597 .2936 .6545	0.0517 .0571 .0579 .0691 .0855 .1438 .3972	0.85 .99 1.45 1.82 1.86 2.04 1.64
						Fl	at-plate	tails						
0000000000	5.25 -4.33 -2.25 -17 1.75 3.92 4.83 5.83 7.83	-0.0769 0697 0377 0065 0064 .0255 .0608 .0752 .0955 .1356	0. di58 dili6 .0385 .0349 .0341 .0379 .0453 .0528 .0622	-1.898 -1.562 9802 1846 1861 .6710 1.342 1.631 1.807 2.181	0000 7777 7777	10.08 15.17 20.50 25.92 15.17 14.15 14.17	0.1802 .31l1 .li887 .6918 1099 0896 0505 0129 0129	0.0766 .1336 .2377 .3984 .0551 .0506 .0110 .0364	2.351 2.352 2.056 1.737 -1.993 -1.770 -1.231 3517 3501	-10 -10 -10 -10 -10 -10 -10 -10 -10	1.58 3.67 4.75 5.67 8.00 10.17 15.25 20.58 25.92	0.0148 .0450 .0638 .0822 .1203 .1610 .2884 .4519	0.0394 0444 0463 0501 0603 0752 1286 2229 3712	0.3762 1.012 1.379 1.641 1.994 2.141 2.214 2.026 1.733
<u></u>						10	O Flared	tails						
000000	-5.33 25 5.00 10.08 15.17 20.67 26.00	-0.0929 0063 .0618 .1891 .3356 .5188 .7161	0.051k .0375 .0522 .0818 .1459 .2590 .4257	-1.81 170 1.57 2.31 2.30 2.00 1.68	-10.2 -10.2 -10.2 -10.2 -10.2 -10.2	-4.42 -3.33 -2.25 42 17 1.75 3.67	-0.0992 0809 0566 0153 0156 .0132 .0131	.0588 .0538 .0477 .0407 .0397 .0426 .0475	-1.69 -1.50 -1.19 375 394 -310 -909	-10.2 -10.2 -10.2 -10.2 -10.2 -10.2	1.92 5.75 7.92 9.92 15.33 20.58 25.83	0.0616 .0812 .1190 .1607 .2888 .1536 .6171	0.0504 .0533 .0626 .0759 .1320 .2283 .3765	1.22 1.52 1.90 2.12 2.19 1.99 1.72
						20	O Flared	tails						
000000	-5.50 25 4.67 10.06 15.25 20.67 25.92	-0.0988 0089 .0815 .1918 .3364 .5265 .7277	0.0596 0444 0591 0925 1593 2769 4478	-1.66 202 1.38 2.07 2.11 1.90 1.62	-10.2 -10.2 -10.2 -10.2 -10.2 -10.2	-4.17 -3.33 -2.25 25 17 1.58 3.58	-0.1105 0836 0583 0141 0117 .0159 .0432	0.0715 .0636 .0546 .0491 .0446 .0483	-1.55 -1.32 -1.07 288 263 263 804	-10.2 -10.2 -10.2 -10.2 -10.2	4.92 5.75 7.67 10.00 15.17 20.42 25.75	0.0596 .0824 .1219 .1593 .2906 .1568 .6523	0.0608 .0591 .0677 .0871 .1437 .2410 .3935	0.980 1.39 1.80 1.83 2.02 1.90 1.66
						30	Plared	tails						
000000	-5.33 17 4.83 10.17 15.33 20.67 25.83	-0.1050 0116 .0824 .1989 .3512 .5446 .7374	0.0673 .0469 .0645 .1019 .1742 .2994 .4778	-1.56 248 1.239 1.952 2.016 1.819 1.544	-9.6 -9.6 -9.6 -9.6 -9.6 -9.6	-4.33 -3.25 -2.17 25 1.75 3.75 4.83	-0.1163 0919 0583 0141 .0193 .0418 .0541	0.0800 .0744 .0632 .0514 .0538 .0629	-1.45 -1.24 922 226 .359 .665 .837	-9.6 -9.6 -9.6 -9.6 -9.6	5.75 7.75 9.92 15.25 20.58 25.50	0.0844 .1300 .1629 .2942 .4642 .6657	0.0686 .0775 .0916 .1503 .2521 .4079	1.23 1.68 1.78 1.96 1.84 1.63
<u></u>			(il config	,				1 0 7	1 a a d	
0 0 0	0 1 2 3	-0.0007 -0138 -0299 -0454	0.0443 .0448 .0453 .0466	-0.02 .31 .66 .98	0 0 0	4 6 7	0.0630 .0817 .1003 .117h	0.0491 .0523 .0563 .0611	1.28 1.56 1.78 1.92	0	8 9 ·	0.1396 .1616 .1853	0.0674 .0742 .0827	2.07 2.18 2.24

Table III.- Aerodynamic characteristics of the models at M = 6.86; R = 343,000;

TWO-COMPONENT STABILITY-AXIS DATA - Concluded

(b) Body-tail configuration; $\beta = 0^{\circ}$

									·						
iH,	deg.	C ^T	C _D	L/D	iH, deg.	deg.	c ^T	C _D	I/D	i _H ,	deg.	c ^T	C _D	L/D	
	10° wedge tails														
-20 -20 -20	5.83 4.00 1.92	-0.0082 0292 0482	0.0433 .0444 .0486	-0.18 65 99	-20 -20	-0.08 -1.92	-0.0661 0867	.0543 .0635	-1.21 -1.36	-20 -20	-4.08 -5.00	-0.1092 1213	0.0755 .0827	-1.46 -1.46	
						FL	t-plate	tails							
0000	-5.25 17 4.83 9.75 14.75	-0.0131 0061 .0281 .0733 .1372	0.0237 .0197 .0239 .0378 .0654	-1.82 33 1.18 1.94 2.10	0 -10 -10 -10	20.08 24.92 -5.25 17 4.83	0.2182 .2997 0621 0196 .0177	0.1149 .1795 .0349 .0259 .0273	1.90 1.67 -1.78 75 .65	-10 -10 -10 -10	9.83 14.92 19.92 25.00	0.0610 .1178 .1777 .2485	0.0388 .0618 .0716 .154?	1.57 1.90 2.48 1.61	
						10	0° Flared	tails							
0 0 0 0	-5.08 17 4.92 9.75 15.08	-0.0431 0077 .0319 .0812 .1458	0.0281 .0248 .0288 .0440 .0750	-1.53 313 1.11 1.85 1.94	-10.4 -10.4	20.00 25.17 -5.33 17 4.83	0.2321 .3203 0672 0218 .0172	0.1267 .2025 .0384 .0274 .0276	1.83 1.58 -1.75 796 .622	-10.4 -10.4 -10.4	9.92 15.00 19.92 25.00	0.0608 41148 .1831 .2582	0.0362 .0617 .1014 .1595	1.68 1.86 1.81 1.62	
						2	0° Flared	tails							
0 0 0 0	-5.17 25 4.92 9.83 15.08	-0.0491 0053 .0356 .0869 .1603	0.0310 .0266 .0316 .0480 .0844	-1.58 20 1.13 1.87 1.89	0 -10.2 -20.2 -10.2	20.17 25.08 -5.25 33 4.92	0.2507 •31:38 ••0705 ••0270 •0156	0.1436 .2239 .0477 .0335 .0326	1.75 1.54 -1.64 81 48	-10.2 -10.2 -10.2 -10.2	10.00 15.08 20.25 25.17	0.0641 .1215 .1911 .2751	0.0440 .0687 .1119 .1763	1.46 1.77 1.71 1.56	
						3	O Flared	taile							
00000	-5.25 17 5.00 10.08 15.08	-0.0538 0038 .0442 .1048 .1830	0.0389 .0320 .0393 .0607 .1040	-1.38 12 1.32 1.73 1.76	0 -9.6 -9.6 -9.6	20.17 25.33 -5.42 21 4.58	0.2808 .3770 0934 01:05 .0088	0.1739 .2672 .0629 .0431 .0398	1.61 1.41 -1.18 94 .22	-9.6 -9.6 -9.6 -9.6	9.83 14.92 20.00 25.00	0.0602 .1235 .2026 .2909	0.0513 .0796 .1290 .2000	1.17 1.55 1.57 1.45	

TABLE IV.- AERODYNAMIC CHARACTERISTICS OF THE MODELS AT M = 6.86; R = 343,000; ONE-COMPONENT BALANCE DATA

(a) Complete model; $\beta = 0^{\circ}$

i _H , deg.	α, deg.	C _m	i _H , deg.	α, deg.	C ^m	iH, deg.	α, deg.	C _m
				30° F	lared tai	ls		
-9.6 -9.6 -9.6	უ ი ი	0.0864 .0401 .0116	-9.6 -9.6 -9.6	N 45	0.011;2 .0271; .021;8	-9.6 -9.6	10 15	-0.0041 0302

(b) Body-tail configuration; $\beta = 0^{\circ}$

	10° wedge tails														
-20 -20 -20	-5 -4 -4 -2	0.1475 .1383 .1215	-20 -20	0 2	0.1073 .0945	-20 -20	14 6	0.0843 .0762							
		•		Flat-	plate tai	ls									
0	-5 0	0.00¼ .002	0 0	5 10	-•011 -0•003	0	15	-0.038							
				10° F	lared tai	ls									
0	1 0	0.0105	0	5 10	-0.012lı 0310	0	15	-0.0659							
				20° F	lared tai	ls									
0	- 5 0	0.0186 .0020	0	5 10	-0.0194 0471	0	15	-0.0960							
	30° Flared tails														
0	- 50	0.0276 0010	0 0	5 10	-0.0325 0733	0	15	-0.1313							

Figure 1.- Photograph of complete model with 10° wedge tail sections. $i_{\rm H} = -20^{\circ}$.

Figure 2.- Systems of reference axes. Arrows indicate positive direction.

Figure 3.- Wind-tunnel model. All dimensions in inches.

Figure 4.- Details of the airfoil sections and exposed plan forms of the various tails tested.

Complete model

X- Tail configuration

Stub-tail configuration

Porizontal tail and top vertical tail

Forizontal tail and bottom vertical tail

Figure 5.- Tail configurations tested.

Figure 6.- Installation of model in the Langley 11-inch hypersonic tunnel. $\alpha = 0^{\circ}$; $\beta = 0^{\circ}$.

(a) 10° wedge tails; $\beta = 0^{\circ}$.

Figure 7.- Variation of lift coefficient, drag coefficient, and lift-drag ratio with angle of attack for the complete model configuration with various tail airfoil sections. $i_{\rm H}=0^{\rm O};~{\rm M}=6.86;~{\rm R}=343,000;$ stability-axis data.

(b) Flat-plate tails; $\beta = 0^{\circ}$.

Figure 7.- Continued.

(c) 10° flared tails; $\beta = 0^{\circ}$.

Figure 7.- Continued.

27

(d) 20° flared tails; $\beta = 0^{\circ}$. Figure 7.- Continued.

28

(e) 30° flared tails; $\beta = 0^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Variation of lift coefficient, drag coefficient, and lift-drag ratio with angle of attack for the complete model using the x-tail configuration with $10^{\rm O}$ wedge tail airfoil sections. M = 6.86; R = 343,000; stability-axis data; β = $0^{\rm O}$.

(a) 10° wedge tail; $\beta = 0^{\circ}$.

Figure 9.- Variation of pitching-moment coefficient with angle of attack for the complete model and body-tail configurations with various tail airfoil sections. M = 6.86; R = 343,000; stability-axis data.

(b) Flat-plate tails; $\beta = 0^{\circ}$. Figure 9.- Continued.

(c) 10° flared tails; $\beta = 0^{\circ}$.

Figure 9.- Continued.

(d) 20° flared tails; $\beta = 0^{\circ}$.

Figure 9.- Continued.

(e) 30° flared tails; $\beta = 0^{\circ}$. Figure 9.- Concluded.

Figure 10.- Effect of tail airfoil section on the variation of lift coefficient with angle of attack for the complete model configuration. M = 6.86; R = 343,000; stability-axis data.

(b) $i_{\rm H} \approx -10^{\rm O}; \ \beta = 0^{\rm O}.$

Figure 10.- Concluded.

(a)
$$I_{\overline{H}} = 0^{\circ}; \beta = 0^{\circ}.$$

(b) $I_{\rm H} \approx -10^{\circ}; \ \beta = 0^{\circ}.$

Figure 11.- Effect of tail airfoil section on the variation of drag coefficient with angle of attack for the complete model configuration. M = 6.86; R = 343,000; stability-axis data.

(a)
$$i_{\text{H}} = 0^{\circ}; \beta = 0^{\circ}.$$

Figure 12.- Effect of tail airfoil section on the variation of lift-drag ratio with angle of attack for the complete model configuration. M = 6.86; R = 343,000; stability-axis data.

(b)
$$i_{\rm H} \approx -10^{\circ}; \beta = 0^{\circ}.$$

Figure 12.- Concluded.

(a) Complete model configuration; $i_{\rm H}$ = 0°; β = 0°.

Figure 13.- Effect of tail airfoil section on the variation of pitching-moment coefficient with angle of attack for the complete model and body-tail configurations. M = 6.86; R = 343,000; stability-axis data.

(b) Body-tail configuration; $i_{\rm H} \approx -10^{\rm O}$; $\beta = 0^{\rm O}$.

(c) Complete model configuration; $i_{\rm H} \approx -10^{\rm o}$; β = $0^{\rm o}$.

Figure 13.- Concluded.

(a) Lateral-force coefficient.

(b) Yawing-moment coefficient.

Figure 14.- Effect of tail airfoil section on the variations of the lateral-force coefficient, yawing-moment coefficient, and rolling-moment coefficient with sideslip angle for the complete model configuration. M = 6.86; R = 343,000; body-axis data; $\alpha = 0^{\circ}$.

(c) Rolling-moment coefficient.

Figure 14.- Concluded.

44

Figure 15.- Summary of the variation of the static stability derivatives and minimum drag coefficient with angle of tail flare for the complete model. $\alpha = 0^{\circ}$; M = 6.86; R = 343,000.

45

Figure 16.- Variation of the lateral-force coefficient, rolling-moment coefficient, and yawing-moment coefficient with sideslip angle for the complete model using the stub-tail configuration with 10° wedge tail airfoil sections. M = 6.86; R = 343,000; body-axis data.

Figure 17.- Effect of tail-surface location and geometry on the variation of pitching-moment coefficient with angle of attack for the complete model configuration with 10° wedge sections. $i_{\rm H} = 0^{\circ}$; $\beta = 0^{\circ}$; M = 6.86; R = 343,000; stability-axis data.

Figure 18.- Effect of tail-surface location and geometry on the variation of lateral-force coefficient, rolling-moment coefficient, and yawing-moment coefficient with sideslip angle for the complete model configuration. M = 6.86; R = 343,000; body-axis data; $\alpha = 0^{\circ}$.

Figure 19.- Variation of the lateral-stability parameters $C_{Y_{\beta}}$, $C_{l_{\beta}}$, and $C_{n_{\beta}}$ at α = 0° with angle of attack for the complete model using various tail arrangements with 10° wedge tail airfoil sections. M = 6.86; R = 343,000; body-axis data.

c = 14.58°

(a) Complete model with flat-plate tails.

c = - .17°

a = 14.50°

(b) Complete model with 10° flared tails.

a = 14.75°

(c) Complete model with 200 flared tails.

a = 14.50°

(d) Complete model with 30° flared tails.

L-89314

Figure 20.- Typical schlieren photographs of complete model with various tail airfoil sections. M = 6.86; R = 343,000.

a = 14.78°

(a) Complete model with 100 wedge tails.

a = 20 3 = 0°

α = 20´β = -8°

(b) Complete model with 10° wedge tails.

 $\alpha = -.17^{\circ}$

α = 14.75°

(c) X-tail configuration.

c = 14.67°

(d) Stub-tail configuration.

L-89315

Figure 21.- Typical schlieren photographs of complete model with various tail arrangements using 10° wedge tail sections. M = 6.86; R = 343,000.